Part Number Hot Search : 
1170D38 BC848B MMSZ5235 08H05 S8050 JR25WPB AOC3860A AL2BR
Product Description
Full Text Search
 

To Download AO4438 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AO4438 N-Channel Enhancement Mode Field Effect Transistor
General Description
The AO4438 uses advanced trench technology to provide excellent RDS(ON) and low gate charge. This device is suitable for use as a load switch or in PWM applications. Standard Product AO4438 is Pb-free (meets ROHS & Sony 259 specifications). AO4438L is a Green Product ordering option. AO4438 and AO4438L are electrically identical.
Features
VDS (V) = 60V ID = 8.2A (VGS = 10V) RDS(ON) < 22m (VGS = 10V) RDS(ON) < 27m (VGS = 4.5V)
D S S S G D D D D
G S
SOIC-8
Absolute Maximum Ratings TA=25C unless otherwise noted Parameter Symbol VDS Drain-Source Voltage VGS Gate-Source Voltage Continuous Drain Current A Pulsed Drain Current Power Dissipation
B
Maximum 60 20 8.2 6.6 40 3.1 2 -55 to 150
Units V V A
TA=25C TA=70C TA=25C TA=70C ID IDM PD TJ, TSTG
W C
Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A Maximum Junction-to-Lead C
Symbol t 10s Steady-State Steady-State RJA RJL
Typ 24 54 21
Max 40 75 30
Units C/W C/W C/W
Alpha & Omega Semiconductor, Ltd.
AO4438
N Channel Electrical Characteristics (T =25C unless otherwise noted) J Symbol Parameter Conditions ID=250A, VGS=0V VDS=48V, VGS=0V TJ=55C VDS=0V, VGS= 20V VDS=VGS ID=250A VGS=10V, VDS=5V VGS=10V, ID=8.2A RDS(ON) gFS VSD IS Static Drain-Source On-Resistance VGS=4.5V, ID=7.6A Forward Transconductance VDS=5V, ID=8.2A IS=1A,VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current TJ=125C 1 40 16.3 30 20 24 0.74 1 3 1920 VGS=0V, VDS=30V, f=1MHz VGS=0V, VDS=0V, f=1MHz 155 116 0.65 47.6 VGS=10V, VDS=30V, ID=8.2A 24.2 6 14.4 8.2 VGS=10V, VDS=30V, RL=3.6, RGEN=3 IF=8.2A, dI/dt=100A/s
2
Min 60
Typ
Max
Units V
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current
1 5 100 2.2 3 22 40 27
A nA V A m m S V A pF pF pF
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
2300
0.8 58 30
nC nC nC nC ns ns ns ns
SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time
5.5 29.7 5.2 34 53 41
Body Diode Reverse Recovery Charge IF=8.2A, dI/dt=100A/s
ns nC
A: The value of R JA is measured with the device mounted on 1in FR-4 board with 2oz. Copper, in a still air environment with TA=25C. The value in any given application depends on the user's specific board design. The current rating is based on the t 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R JA is the sum of the thermal impedence from junction to lead RJL and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using 80 s pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25C. The SOA curve provides a single pulse rating. Rev 2 :Sept 2005 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE
Alpha & Omega Semiconductor, Ltd.
AO4438
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
30 10V 4V 4.5V 6V 20 ID (A) ID(A) 25 20 15 10 25C 5 0 0 1 2 3 4 5 VDS (Volts) Fig 1: On-Region Characteristics 22 VGS=4.5V 20 RDS(ON) (m) Normalized On-Resistance 0 1.5 2 2.5 3 3.5 4 VGS(Volts) Figure 2: Transfer Characteristics 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0 5 10 15 20 0 25 50 75 100 125 150 175 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 50 ID=8.2A 40 RDS(ON) (m) 125C IS (A) 30 25C 20 1.0E-04 10 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage 1.0E-05 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics 1.0E-01 1.0E-02 1.0E-03 1.0E+01 1.0E+00 125C Temperature (C) Figure 4: On-Resistance vs. Junction Temperature VGS=4.5V ID=7.6A VGS=10V ID=8.2A VDS=5V 125C 30
10
VGS=3.5V
18 VGS=10V 16
14
25C
Alpha & Omega Semiconductor, Ltd.
AO4438
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
10 8 VGS (Volts) 6 4 2 500 0 0 10 20 30 40 50 Qg (nC) Figure 7: Gate-Charge Characteristics 0 0 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 5 10 30 3500 VDS=30V ID=8.2A Capacitance (pF) 3000 2500 2000 1500 1000 Coss Crss Ciss
100.0 RDS(ON) limited 10.0 ID (Amps) 1s 0.1s 1.0 TJ(Max)=150C TA=25C 0.1 0.1 1 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note E) 10 100 10s DC 10s Power (W)
40 100s 1ms 10ms
TJ(Max)=150C TA=25C
30
20
10
0 0.001
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)
10 ZJA Normalized Transient Thermal Resistance
D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=40C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD Ton Single Pulse
T 10 100 1000
0.01 0.00001
0.0001
0.001
0.01
0.1
1
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance
Alpha & Omega Semiconductor, Ltd.


▲Up To Search▲   

 
Price & Availability of AO4438

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X